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On the short surface waves due to an oscillating, 
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A body whose boundary C is vertical at the free surface F oscillates a t  high 
frequency in some prescribed manner. Asymptotic forms in terms of limit 
potentials are obtained for the upward force and the moment about a line in P 
of the pressure forces on the body. The cylindrical waves radiated to infinity are 
found to be asymptotically equivalent to  those obtained in a two-dimensional 
solution of the Helmholtz equation. Some illustrative examples are given, 
principally the horizontal ellipsoid, in which case comparison with strip theory 
is possible. 

1. Introduction 
Cartesian co-ordinates (2, y. x )  are chosen with z measured vertically down- 
wards and origin in the plane of the undisturbed free surface F of infinitely deep, 
inviscid, incompressible fluid under gravity. The boundary C of a partially 
immersed body containing the origin oscillates in a prescribed manner with 
small constant amplitude and period 2n/u about the equilibrium position. 
Surface tension is neglected and the motion is assumed small enough for the 
equations to be linearized. Then the velocity potential, which is of the form 
Re($(x, y, z )  e-$d), satisfies 

throughout the fluid and the boundary conditions 

V2$ = 0 (1.1) 

K$ + a$/az = o on F ,  (1.2) 

(1.3) 

where K = u2/g and g is the gravitational acceleration, and 

a$/an = u, a given complex velocity distribution, on C, 

where a/an denotes the normal derivative directed into the fluid. Furthermore, 
$ must satisfy a radiation condition, namely that only outgoing waves exist at 
infinity. John (1950) showed, for finite or infinite depth, that if the body is 
entirely contained within the vertical cylinder whose cross-section in the plane of 
P coincides with that of C, then the above boundary-value problem for $ possesses 
a unique solution. On physical considerations, it seems likely that this restriction 
on the shape of the body is not crucial in this respect and that the solution is 
uniquely determined not only for any smooth body but also when the body is not 
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simply connected, e.g. a torus, or when more than one body is generating the 
wave motion. 

Another variation of the problem occurs when the fluid is no longer of infinite 
extent but is contained in a channel or lake. Then no energy can be radiated to  
infinity but normal modes of oscillation exist and resonance may occur. Examples 
of this and the multi-body problem will be discussed in a later paper. 

Here it is of interest to find the amplitude and phase of the waves radiated to 
infinity. This will be done in terms of the velocity potential; the surface elevation 
Re [[(x, y) e-;d] is then obtained from Bernoulli’s equation, used to establish 
(1.2), and is given by 

5(x, Y) = ( iK/d q5@, Y> 0) .  (1.4) 

The most commonly considered prescribed motion is that of heaving, in which 
case the function u in (1.3) is U az /an ,  where U is the amplitude of the heave 
velocity, and another quantity of interest is the virtual or added mass M ,  
given by 

where p is the density of the fluid. The imaginary part of the same integral 
expression is proportional to the energy transmitted to infinity in one cycle. By 
dividing by the mass of displaced fluid, both quantities can be made non- 
dimensional and are known as the virtual-mass and wave-making (or damping) 
coefficients. They measure respectively the components of force which are in 
and out of phase with the given acceleration of the heaving body. 

However, the motion of rolling or pitching about an axis in the free surface 
has features similar to those of heaving motion. Suppose that the body rotates 
with angular velocity Q e - i d  about the + y axis. Then the normal derivative u 
in (1.3) is given by 

and the moment of the pressure forces acting on the cylinder against the angular 
acceleration Re [ - iaQ e-d] is 

Hence the added moment I is given by 

I = --Rejcq5-dS. P a# 
SL2 an 

This can be compared with the moment of inertia about they axis of the displaced 
fluid to obtain an added moment-coefficient. 

In  this paper only short waves are considered, in which ca8e K is large and the 
surface wave disturbance is essentially confined to a layer of thickness O(K-l) 
below the free surface. But since K-1 is a length, K large has no absolute meaning 
without reference to a length scale of the problem. Hence K-l is to be small 
compared with the girth of the body and the values of the vertical radii of 
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curvature of C near F. It is on this basis that the length scale I is chosen for the 
definition of the dimensionless, large parameter N ,  given by 

N = Kl. (1.8) 

Since the disturbance is essentially confined near the free surface, it is expected 
and can be shown that there is a negligible difference between corresponding 
situations with infinite depth and finite, constant depth. The former case will be 
usual here since it is simpler to handle, and the modifications required for finite 
depth will be discussed in 0 5. 

Considering first two-dimensional problems, the simplest of this type, namely 
heaving motion of an infinitely long, half-immersed, horizontal circular cylinder, 
was studied rigorously by Ursell (1953). Later (1954) he suggested plausible 
arguments for obtaining the same results more simply, using them to show that 
the wave-making effect of a rectangular cylinder is exponentially small and 
emphasizing the cylinder's barrier effect, which implied that the results of some 
previous authors must be in error. The plausible arguments showed that the 
leading terms of the virtual-mass and wave-making coefficients depend only on 
the limit potential do, which satisfies (1.1) and (1.3) and vanishes on F and a t  
infinity. This was subsequently established rigorously by Rhodes-Robinson 
(1970,1972) for heaving motion in water of finite or infinite depth of a cylinder of 
arbitrary cross-section having vertical tangents and finite curvature at the free 
surface. 

Rigorous results for an oscillating finite dock were obtained by Holford (1964) 
and further terms were found, by means of a different approach, by Leppington 
(1970). 

Holford (1965) summarized how previous work on a heaving cylinder with an 
arbitrary angle of intersection a of C and F had failed to give correct limiting 
values when a tends to zero or 8n. By means of suitable assumptions involving 
the use of known sloping-beach potentials, Holford obtained a formula for the 
wave amplitude at infinity which agrees with the dock result and becomes 
singular as a+ &. Such a singularity is reasonable, since when a = in, the 
heaving motion does not, to first order, have any wave-making effect, a fact 
which is exploited in the analysis for this situation by using the limit potential q5,, 
defined above. 

Apart from having one less variable, two-dimensional problems have the 
added advantages compared with their three-dimensional counterparts of the 
availability of complex-variable techniques and the fact that the body acts 
essentially as a barrier between semi-infinite regions of fluid. Thus the rigorous 
methods used for the two-dimensional dock do not work in three dimensions, 
where there is also no equivalent of the sloping-beach solution. However the 
plausible method of matched asymptotic expansions used for two-dimensional 
problems by Leppington (1972,1973~)  has been successfulIy applied by the same 
author (1973 b) to  a heaving or rolling circular dock and a heaving half-immersed 
sphere. 

Other progress in three dimensions has been made only for cases where C meets 
P a t  right angles, which situation is assumed hereafter. Linearization of the 
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boundary condition (1.3) implies that only the mean position of C is relevant. 
The rigorous methods of Ursell(1.953) were adapted for a heaving half-immersed 
sphere by Davis (1971), who later (1975~) explained why extension of such 
methods to other bodies is impossible. However they can be modified to consider 
a heaving sphere in a hemispherical lake (Davis 19753). With assumptions like 
those of Ursell (1954), Rhodes-Robinson (1971) obtained results for a heaving 
axisymmetric body and these have been used to consider the heaving torus 
(Davis 1975~). 

Hermans (1973) has shown how ray methods can be used to consider the 
propagation of the waves generated by an arbitrarily shaped smooth body. Here, 
of course, the large parameter depends on frequency, and the application of ray 
methods must be distinguished from that discussed by Shen (1975), with an 
extensive bibliography, in which the large parameter is the ratio of horizontal 
and vertical length scales. 

Considering now the present paper, $2 contains a summary, with two illustra- 
tive examples, of the two-dimensional problem. The general results in $3, 
obtained principally by suitable applications of Green’s theorem, are asymptotic 
forms of (i) the upward force and the moment about the y axis of the pressure 
forces on the body in terms of limit potentials and (ii) the amplitudes of the 
cylindrical waves radiated to  infinity in terms of a two-dimensional solution of 
the Helmholtz equation. 

These results clearly remain applicable, in the absence of resonance, when 
there is present more than one body of the type considered. That they remain 
valid when the depth is finite is demonstrated in $5.[In $4, their application to 
a heaving, rolling or pitching horizontal ellipsoid is considered and some numerical 
calculations tabulated. The results obtained are compared with those predicted 
by strip theory, used by naval engineers. 

2. The two-dimensional problem 
Here the immersed, body is an infinitely long horizontal cylinder of uniform 

cross-section and the velocity potential $ is independent of a horizontal co- 
ordinate, say y. Then (1.1) can be written as 

a 2 $ l a X 2 +  aZ+/azZ = o (2.1) 

$ N A*e*sKze-Kz as x+ fa. (2.2) 

and the radiation condition takes the form 

Suppose that the boundary C, now identified by its cross-sectional curve, meets P 
at ( & a, 0)  and that at these points the curvature of C is not large and the values 
of u in (1.3) are u$ and u; on the right and left respectively. Then, choosing the 
length scale Z to be a, (1.8) becomes N = Ku. 

For the commonly considered heaving motion, u$ = u; = 0 and hence it is 
of great help to introduce the limit potential $o, which satisfies (2. I), (1.3) and the 
limiting forms of (1.2) and the radiation condition as K-zco, namely 

+o = 0 at x = 0 and a t  infinity. (2.3) 
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If one then writes 

i t  is readily seen that #, satisfies (2.1), radiation conditions like (2.2) and the 
boundary conditions (1.2) and 

-=."(%) a+ = v  say o n c .  
an an az 

Thus g1 satisfies a similar boundary-value problem to that for q5, except that 
now the values v: of v at ( & a, 0 )  are in general non-zero. Since go is wave free, all 
the wave terms in appear in q51 and it is seen that the lack of a wave-making 
effect, to first order, due to uf being zero, has led to the N-l factor multiplying 
all wave terms. Rhodes-Robinson (1970) has proved that, in a heaving motion, 
the added mass M per unit length and the amplitudes A* are asymptotically 

A* - - (2ia/NZ) v$ e-iN. (2.7) 

All the terms here depend only on the limit potential #o, which, being wave free, 
is much easier to iind than q5. Similar results hold for any motion such that 
uO+ = u; = 0, e.g. rolling. If either or both of these velocities ianon-zero, then on 
the corresponding side(s) of the cylinder, q5 is already like the #1 introduced 
above and the amplitudes are given by 

2ia 
A+ - - N uie-iN (ui * 0). 

Note that these amplitudes can be obtained by writing q5 = e-&+(x) and solving 
$"(x) +K2$ = 0 in 1x1 > a subject to the conditions 

$ - A*eiglzl as 1x1 300, $'( a)  = 2u$. 

Similarly for q51 and formulae (2.7) when applicable. 
As already implied, the orders of magnitude of A" &re independent of uz 

respectively. Indeed the proofs of the formulae (2.7) and (2.8) can be adapted 
to the case of many parallel cylinders oscillating without resonance with the 
same frequency CT and all having boundaries which are vertical at z = 0. Then to 
leading order each far-field solution is unaware of the cylinders beyond the 
nearest one, in agreement with Ursell's (1961) result for the transmission of waves 
under obstacles. 

There follow two illustrative examples. 

(i) T h e  horizontally oscillating cylinder. In  this case, u$ = -t U ,  and (2.8) is 
applicable, yielding A* - ( T 2ia lN)  Ue-iN. 

(ii) T h e  rolling elliptic cylinder with (comparable) semi-axes a and b. In  terms 
of elliptic co-ordinates ( f ,  r ) ,  the limit potential q50 is here given by 

q5,, = @(b2 - a2) exp [ - 2(5- fob)] sin 27, 
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where E = 5, on the cylinder. Then, since (2.6) applies to (1.7) as well as (1.5), the 
added moment per unit length of the cylinder is given asymptotically by 

(2.9) 

where q = ( b  - a)$ ( b  + a)-i and is real or pure imaginary according as b a. 
By considering $, it follows on substitution in (2.7) and (2.2) that 

3. The three-dimensional problem : some general results 
Equation (1.1) is now 

a24 a 2 4  a2$ 

ax2 ay2 a22 
-+-+- = 0 

and the radiation condition takes the form 
a3 

q5 8 en(AncosnO+BnsinnO)HE)(KR)e-Kz as (x2+y2)) = R+m, (3.2) 
n=O 

where en is Neumann's symbol (E, = l ,cn  = 2 when n 2 1). Let C, denote the 
intersection of C and P and uo(s) the values of the normal velocity u in (1.3) on 
this closed curve. Denote by lluoll the Lm norm of uo(s), i.e. the maximum value 
of Iu,(s)I, and assume first that lluoll > 0. 

An application of Green's theorem to $ and its complex conjugate 7 in the 
fluid region shows, in virtue of the Wronskian 

that 

= energy transmitted in one cycle. 
Consider the function $(z, y) satisfying 

a2$ a2$ 

ax2 ay2 
- + - + K2$ = 0 outside C, 

and the conditions 
a$/an = 2u0(s) on C,, 

m 

(3.5) 

$ en(ancosnO+bnsinn8)H~)(KR) as R+w.  
n=O 

Note that this is analogous to the $ defined in 3 2. Assuming that, as N -f ao, 

$lc 4 ~ \ 1 ~ 0 1 1 )  a5 Z / l - t 0 9  (3.8) 

it will now be shown that the amplitudes {An, B,} are asymptotically equal to 
{an, bn}. (This confirms the conjecture made by Leppingtoa (19733) concerning 
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the scattering of surface waves since that problem is easily reduced to the 
present one.) 

Let H(x,  y ,  2) = H,(x, y )  e-& be a general combination of incoming and out- 
going cylindrical waves such that a H p n  vanishes on C,, i.e. 

1 "  
Ho(x, y) = 2 en(cn cos ni3 + dnsin no) Hg'(KR) 

n=O 

(3.9) 
1 "  + - C en(Cn cos ne + 0, sin no) Hg'(KR), 
2 n = 0  

aHo/an = 0 on C,. (3.10) 

The coefficients {C,, D,} are uniquely determined from {cn, d,} and vice versa. 
By considering complex conjugates, the infinite matrix relating these coefficients 
is seen to be unitary. 

Let Green's theorem be applied to Ho and 9 outside C,. The functions satisfy 
(3.5) and the conditions (3.6) and (3.10) and their behaviour at infinity is given 
by (3.7) and (3.9). The contributions from infinity are evaluated by means of 
(3.3), yielding 

r m 

H,u,ds = i e,(anc,+bndn). J ce n=O 
(3.11) 

According to ray theory, the function Ho(x, y )  can be continued within C, as 
far as caustics, none of which intersect C, and whose positions depend only on 
the geometry of C,. Thus H ( x ,  y ,  z )  exists on and outside a vertical cylinder I?, 
independent of K,  enclosing the x axis and with cross-section lying strictly 
inside C,. The continuation actually required below is 3- K-2Z-1, i.e. asymptoti- 
cally small. Let C* be the part of C lying outside I?. 

When Green's theorem is applied to H and q5 in the fluid region outside I?, then 
in virtue of (1.3) and the usual evaluation of the contribution from infinity, it  
follows that 

(3.12) 

the error being exponentially small, namely the contribution from r. 
Consider the integral on the left-hand side of (3.12). Since H = H,(z, y) e-ge, 

only points on C up to a depth O(K-l) need be considered. Since C is vertical 
at F ,  this leaves a thin strip bounded by C, and such that variations in K R  in any 
vertical plane are O(Kx2/Z), i.e. small. It is the rapid exponential decay combined 
with this slow variation of the corresponding oscillatory terms which is so vital 
in these problems. With H, given by (3.9) and satisfying (3.10), it can be shown 
that 

q a  H,Ico[l +O(Kz2/41 e-&, 
[aH/anla - H, I O(K2z2/Z) e-&. 

Hence, in virtue of (3.8), the left-hand side of (3.12) is asymptotically equal to 
that of (3.1 l) ,  for all sets of coefficients {en, dn}. Thus the same must be true of the 
right-hand sides, implying that 

a, N A,, b,, N Bn for all n. 
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So the amplitudes in (3.2) and hence the behaviour of $ as R +. co can be asymp- 
totically determined by solving the simpler, two-dimensional problem given by 
(3.5)-(3.7) to which ray theory can be applied. The surface elevation is then 
given by (1.4). 

It is crucial to the above argument that all possible sets of coefficients are 
considered. As {c,, an} are varied, the order of magnitude of the leading term in 

is established; similarly for (Cn,D,) and the left-hand side of (3.12). The result 
is obtained by equating these leading terms, it then being immaterial that they 
may vanish for particular sets of coefficients. Rhodes-Robinson (1971), with 
only one coefficient to find in the axisymmetric case and with the normal velocity 
real, was able to construct an H which is non-oscillatory on C,, namely @ - $, and 
thus ensure the non-vanishing of the leading terms above. 

As a simple example, consider a horizontally vibrating sphere of radius a. 
Writing x = r sin a cos 8 and z = r cos a, one has u,(8) = U cos 8 and then 

2U dHy) -1 
# N 

[ dx ( N ) ]  Hil)(KR) e-Kz cos 8 as R + co 

after simplifying by means of the asymptotic form of the Hankel function. The 
energy radiated in one cycle, given by (3.4), is 2 p ? ~ ~ U ~ a ~ N - ~ ,  where N = Ka. 

In the case when lluoll = 0, i.e. uo(s) = 0, the limit potential #, is used, as in $2, 
to introduce the subsidiary potential $1 and the wave terms are uniformly scaled 
by N-l. The same argument as above can now be applied to g1. Thus if v0(s) 
denotes the values of v, given by (2.5), on C,, then assuming that as N+co 

# l l C  O ( ~ l I ~ 0 l l )  as Z l l - t O ,  (3.13) 

the coefficients {A,, B,) in (3.2) are asymptotically given by (a,, b,) in the solution 
of (3.5) and (3.7) and 

aq+/an = N-lw,(s) on C. (3.14) 

So {A,,Bn} are reduced by O(N-l)  and the energy radiated in one cycle now 
normally has a factor N-4, as indicated by the wave-making coefficient for 
a heaving sphere (Davis 1971). 

Though the result here concerns the behaviour at infinity, it  is reasonable to 
suppose that the solution at any given field point P not close to the body is 
asymptotically given by the corresponding solution of the two-dimensional 
Helmholtz equation, which is obtained by the ray-theory method (Keller, Lewis 
& Seckler 1956). Indeed Ursell (1966) found that the dominant contribution 
comes from point(s) on the body whose normal passes through P. Hermans (1973) 
used ray theory directly and his presentation is improved by the observation 
that his normal derivative is equivalent to the function w = la2#,/anaz defined 
in (2.5) here. 
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Consider now the upward force on the body and the moment of this force about 
the y axis, for a general motion leading to a potential q5. These are conveniently 
expressed as 

the potentials q5H and qP, for pure heaving and rolling (or pitching), being 
appropriate here because they satisfy the boundary conditions 

(3.15) 

and thus give rise to the correct integrals of pressure. Since these derivatives 
vanish on C,, the limit potentials $f and 4: can be used to introduce the poten- 
tials q5F and @as  in (2.4). Corresponding to (2.5), one has 

(3.16) 

The limit potentials & and 4; of q5F and 4,Prespectively satisfy (2.3) and (3.16), 
and it will be assumed, as done by Rhodes-Robinson (1971), that 

@ N q5E, $,P - 4; as Kz+oo. (3.17) 

By applying Green's theorem in the fluid region to (i) 4 and #H and (ii) 4, and 
$g - 1 a#F/az, it follows using the relevant boundary conditions that 

Also the assumption (3.17) implies that 

c c 

and hence 

where the leading term requires knowledge only of @. Similarly 

The particular cases g5 = q5H and q5 = qP yield, on substitution in (1.5) and (1.7), 
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For example, consider the motion generated when C is a sphere of radius a and 
the function u is given by 

where z = T cos a and x = r sin a cos 8. The limit potentials are easily found to be 

@ = ( - Ua3/2r2) cos a, 4: = 0, 

1 3 u,, un+2 A =  -mf;o~lI l .+ lm+l  Pg (COS a) cos me, 

and after some elementary calculation, the upward force on the sphere is - - iq37ra3 e--id[dguol + &uo2 - (8N)-l (uol - +uo3)], 

whilst the moment of this force about the y axis is zero. Also, with R = r sin a 
and N = Ka and again using asymptotic forms to simplify the Hankel functions, 

q5 - N-l(aR)+ e-& eiK(R4[2ul1 cos 8 - uo2 cos 28 - 3U1, cos 381 as R-t 00 

and the energy transmitted in one cycle is 

lull] + [ uo2[ + 9 [ u13( 2]. 

However if ull = uO2 = uB = 0, the wave making is due to the subsidiary 
potential q51, in which case further calculation shows that 

q5 - N-2(uR)t e - a  eig(R-a) [3uO1 - j$uo3 + 8 ~ 1 2  cos 81 as R-t 03 

and the energy transmitted in one cycle is 

n2p~3N-4[9 I uol - 2 ~ 0 3  12 + 32 1 ul21 2]. 

These are not the second terms in expansions beginning with the expressions 
above. I n  heaving motion, only uol is non-zero whilst in the example considered 
earlier, the horizontally oscillating sphere, only ull is present. 

4. The heaving and rolling of a horizontal ellipsoid 

boundary C is given by 
This section considers an ellipsoid whose axis lies along the x axis and whose 

(4.1) 
x2 y2 + 22 -+- = 1. 
a2 b2 

(The alignment of the horizontal axis is immaterial in heaving motion, whilst if 
there is symmetry about the y axis, then rolling produces no waves. Also not 
considered is the ellipsoid with vertical axis of symmetry because, with some 
modification for rolling, it can be treated by the methods of Rhodes-Robinson 
(1971). Rotations about they axis ,as in (1.6), are described as rolling or pitching 
according as a 2 b. If the usual elliptic co-ordinates are used, as in example (ii) 
of $2 ,  then separate calculations are required for the cases a b, :although the 
steps are identical. To avoid this duplication, define ( A ,  7,8) by 

x = Acosr, ( y , ~ )  = (h2+b2-a2)tsinT(sine,cos8). (4.2) 
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Then the fluid region is A 2 a, 0 < 7 < T and 101 < in. The line elements hAdA, 
h,, d7 and h, dt9 are given by 

(4.3) 
and hence (1.1) becomes 

Particular solutions of (4.4) are z and xz and here the required solutions, which 
must vanish at infinity, will be of the form 

g5 = F(A) x or g5 = G(h) xz. 

F and G can be expressed in terms of Legendre functions, but it is simpler to solve 
directly, obtaining 

(4.5) 
dv  s” A VZ(V2 + b 2  - U2)Z’ 

G(h) = Cb2a(b2-a2) 
w dv j A  (v2+b2-a2)2’ 

P(h) = - Ab% 

The potentials g5H and q5p  of the heaving and rolling motions respectively are 
such that their limit potentials q5f and q50p vanish on P and satisfy (4.4) and the 
conditions (3.15), i.e. 

a(++ uz)/a~ = o A = a, 

The appropriate solutions are of the form 

g 5 f  = UF(h)z ,  g5f = OG(h)xx, (4.6) 

where P and C are given by (4.5), in which case the conditions at A = a become 

F’(a) = [1-FP(a)]a/b2, G‘(u) = ( a b 2 ) - 1 [ a 2 - b 2 - ( ~ 2 + b 2 ) C ( ~ ) ] .  

On substituting ( 4 4 ,  equations determining A end C are obtained, namely 

Now from (4.6) 

and on substituLan in (3.18), with the surface elements given -y (4.3) and P and 
C by ( 4 4 ,  the free-surface integrals can be evaluated by repeated integration 
by parts. After some calculation, one finds that 

- A - 1 - 2- (.z [ 4 + ( hb)”l - #) , M 
@rpab2 Kb 



8 02 

i.e. 

where V is the virtual-mass coefficient, and 
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v - P o  - PIlKb, (4.9) 

I 2 (a2-b2)2 1 a2-b2 2 
- N -  

p;rrab2 15 (a2+b2) (C - 1) + ( m2) [a2 + 2b2C - (a2 + 2b2) C2] 

6Kb 

i.e. since the moment of inertia of the immersed body about the y axis is 
&pnab2(a2 + b2), the added-moment coefficient - yo, where 

These dimensionless quantities are introduced for convenience of tabulation 
below. From (4.7), it may be shown that 

C-l = l+r-) (3A-l-2), 

1 (4.11) 
(baa a+c a2 
- 1 0 ~ - + 1 - ~  ( a >  b. G=a2-b2). 

Computed values of the coefficients Po, p1 and yo are given in table 1. 
The reduction of the ratio b/a is limited by the fact that b is the depth of the 

body, a fact manifested by the appearance of Kb as the large parameter in the 
asymptotic expansions (4.9) and (4.10). A further length whose smallness must 
be borne in mind is the radius of curvature of Cat the ends ( rt a, 0, 0) ,  namely b2/a. 

When alb -+ 0, C-l+ 0 and yo becomes infinite. However the added moment 
remains finite, having the limiting value &pb5, because Cafb + 41377. This corre- 
sponds to the stabilizing effect of a keel on a boat. 

The waves radiated to infinity can, according to Q 3, be determined by finding 
solutions $ H  and l l f p  of (3.5) on F which, as in (3.7), have only outgoing waves 
at infinity and satisfy the appropriate forms of (3.14), which with the aid of 
(4.8) are 
. I  

2UAa *I 2Q a2-b2 
Kb2 a2+b2  ' ah = -(-) (b2+a2C)cos7,. (4.12) 

It is convenient now to revert to the usual elliptic co-ordinates. For a > b, write 

c2 = a2-b2, h = ccoshc, 7 = 8, a = ccosht0, b = csinhEo. 

For a < b, write 

c2 = b2-a2, h = csinht, 7 = $n-8, a = csinhEo, b = ccoshf(,. 

Then (3.5) becomes, in either case, 
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a > 6: heaving and pitching 

bz/a2 P O  PI Yo C-1 
1 0.5000 0.1875 0 0.6000 

0.9 0.5158 0.1935 0.0018 0.6028 
0.8 0-5336 0.2003 0.0081 0.6052 
0.7 0.5539 0.2083 0.0201 0.6072 
0.6 0.5772 0.2176 0-0402 0.6086 
0.5 0.6046 0.2290 0-0713 0.6090 
0.4 0.6376 0.2434 0.1185 0.6079 
0.3 0.6790 0.2625 0.1900 0.6041 
0.2 0.7338 0.2902 0.3020 0.5954 
0.1 0.8151 0.3375 0.4935 0.5756 

(Exact values for the sphere included for comparison.) 

az/b2 

0-9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0.04 
0.01 

a < b :  heaving and rolling 

P o  PI Yo 
0-4843 0.1816 0-0019 
0.4668 0.1752 0.0085 
0.4472 0.1681 0.0219 
0.4250 0.1602 0.0454 
0.3994 0.1511 0.0843 
0.3690 0.1405 0.1481 
0.3319 0.1275 0.2559 
0.2837 0.1107 0-4545 
0.2132 0-0856 0.9162 
0.1425 0.0593 1.7930 
0.0748 0.0323 4.0223 

TABLE 1 

C-' 
0.5967 
0.5924 
0.5867 
0.5791 
0-5686 
0.5536 
0-5312 
0.4944 
0.4222 
0.3221 
0.1928 

The solutions in separated variables are in terms of Mathieu functions. 
Se,(Kc, cos 9) and So,(Kc, cos 9) are respectively even and odd in 9 with period n 
or 2n according as n is even or odd. The corresponding radial solutions for out- 
going waves are He,(Kc, cosh() and Ho,(Kc, cosh (). For a detailed discussion, 
including the notation, equations and properties quoted below, see Morse & 
Feshbach (1953, pp. 1407-1411, 1422, 1568-1572). 

Now, since 
a, Bg(Kc, 2m) 1 

Se,,( Kc, cos 9) = - 
277 c 

m=o Jf&(Kc) 

the solution for the heaving motion is 

When Kc is large, Se2m decays exponentially away from 9 = f &r, i.e.the waves 
are propagated mainly at  right angles to the major axis. At large values of 
Kc cosh E, He,, behaves like a Hankel function: 

He,,(Kc ,cosh 5) N (Kc cash()-* exp  KC cosh 5- &r(2m + i)]}, 
51-53 
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i.e. the waves, as expected, ultimately become cylindrical. Further, 

m 

n=O 
Se,,(Kc, cos 7) He,(Kc, cosh [) = (@)l  Z B&(Kc, 2m) HL; (KR) cos 2nB 

(8 being the polar angle of $3), so that, in the notation of (3.7), 

u2n-1 = b, = 0 (n  2 I), 

When c-f 0, &,(Kc, 2m) - S,, (the Kronecker delta) and M:,(Kc) N 2n/em, and 
since A + +, the known result for the heaving sphere is recovered. Notice that 
interchanging a and b does not affect the Mathieu functions and their constants 
but only the multiplicative factors of $*. 

Similarly, for the pitching and rolling motions, the expansions 

B$ (Kc, 2m + 1) = z  Se,,(Kc, cos 8) = cos 6, 
m=O %,+,(Kc) 

may be respectively used. I n  either case, no waves propagate along the y axis 
and when Kc is large, the disturbance decays exponentially away from the x axis. 

The ray-theory solution of the heaving problem shows that, at large distances R 
in the direction making an angle p with the x axis, 

where 
$H - C(p) R d  exp (iKR), 

2UA 1 1 -9 
C ( 8 )  = - %(Kb)2 [- a2 sin8g+~cosa,8] b exp [-iK(a2cos2~+b2sin2~)*]. 

Finally it is appropriate to compare these results with those of the strip theory 
applied to slender bodies (Ogilvie & Tuck 1969) .For a B b, (4.9) and (4.11) imply 
that 

But using the circular-cylinder result of Ursell (1953), the strip theory predicts 
a virtual mass of 

in very good agreement, despite the restriction that Kb be large. The requirement 
K B a/b2, the curvature at the 'sharp' ends of the body, appears to be unneces- 
sary because these points make no contribution to the transmission of waves 
along the minor axis. Strip theory is inapplicable to pitching motion, which is 
far from being two-dimensional. 
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For b B a, one finds that 

v N ;; [ 1 -& (1 - &)] [ 1 + 0 (;)I 
whilst, as stated earlier, the added moment N &pbs[l +O(a/b)] .  Notice that 
the errors are more significant than in the a $ b case and that the leading term 
in 7 is zero. Both these factors contribute to the poorer agreement with strip 
theory in this case. The cross-section y = b sin 7 of the ellipsoid is an ellipse with 
axes a cos 7 and b sin 7. Rhodes-Robinson (19704 showed that the virtual-mass 
coefficient for an ellipse with axes a and b is 

U 8u q-tan-lq b-a  t 
N-- b n-Kb(a+b)[ q3 1' where "(G) ' 

whilst the corresponding result for the added moment is given by (2.9). Hence 
strip theory suggests that 

v,w- I-- 3 (9-t;;-13] ;( K(a+b) Y 

I N &pnb& N &pnb5. 

Agreement for I is reasonable and for J' the zero leading term is correctly pre'e- 
dieted, but errors of some 25 yo are present in the first non-zero terms of P. 

These methods can also be usefully applied to a vibrating finite vertical 
strip. There is some simplification due to the boundary condition on the radial 
functions He, and Ho, being applied a t  = 0. For a similar example, see Morse 
& Feshbach (1953, pp. 1423-1425). 

5. Modifications for finite depth 
I n  this case the additional condition 

a$/az = o at z = h ( 5 4  

must be applied. This is satisfied by the limit potential $o but not by a$,/az. 
Hence, following the method of Rhodes-Robinson (1971), the introduction of 
the subsidiary potential q50 in (2.4) must be modified as follows: 

x ( k c o s h k y - K ~ i n h k ~ ) J ~ ( k R ) d k ,  (5.2) 

where the integral has a contour indented below the pole k = ko. The functions 
a,(k) and b,(k) are determined by (5.1), i.e. 

2 ~~~~~k~[u,(k)cosnO+b,(k)sinnO]J,(kR)dK = a24 -((R,O,h). 
n=0 822 

By means of (l.l), Fourier coefficients, inversion of Hankel transforms, integra- 
tion by parts and Bessel's equation, it follows that 
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Also, as R -+ 03, 

i.e. the correction term has exponentially small outgoing waves and so, asymp- 
totically, the wave terms of $ are contained in q51. 

Considering the leading terms, as N --f 00, 

k2[a,(k) cos n8 + b,(k) sin no] 
cosh kh 

x sinh ky J,(kR) dk 

and in addition to the assumption (3.13), it is also assumed that 

as N + co and z/l+ 0. This form has the same appearance as the exact value of v 
in the infinite-depth case. Other corrections in $ 3  are exponentially small and 
thus the results in terms of the limit potentials remain valid when the depth 
is finite. 
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